MOBILIZING POLITICAL AND INSTITUTIONAL SUPPORT

Goal
To instill an understanding of and capability for mobilizing political and institutional support

Learning outcome
After completing this session, you will be able to recognize key factors and strategies for promoting and mobilizing political and institutional support.

Learning objectives
As you work through this session, you will learn to
✓ Identify key political, institutional and financial stakeholders for EVR program implementation
✓ Understand the principles and basic concepts of how to mobilize support for sustainable EVR efforts

“The key to building sustainable solutions is to increase the capacity and desire of the local community to reduce their own vulnerabilities.”
Prof. Jeannette Fernandez, 1998

1. Identifying Key Stakeholders

Stakeholders, by definition, have a stake or interest in earthquake vulnerability reduction, and they should play a role in both (1) identifying and selecting the risk reduction projects for an EVR plan and (2) implementing EVR projects.

Stakeholders can be individuals or organizations. Six types of stakeholder organizations have been identified as having a role in implementation¹:

1) Primary target organizations (architects, engineers, developers, builders, etc.)
2) Market intermediary organizations (those that provide mortgage loans or insurance)
3) Front line implementing organizations (usually public agencies charged with implementation)

4) Indirect implementing organizations (other public agencies responsible for overseeing implementation e.g. of building codes, regulating, sanctioning or providing incentives \\
5) Non-governmental policy-making participants, such as professional associations \\
6) Policy making organizations, including legislative and executive entities.

Not all of these types of organization will play a role in every case. And it should be noted that organizations typically are not internally consistent in their thinking. Internal bureaucratic politics can strongly influence how an organization approaches its role in implementing a program, project or activity.

The role of stakeholders in implementation must not be underestimated. Unless the interests of the various stakeholder groups, especially those of the target population, are accommodated at some minimally acceptable level, it is likely that EVR policies and programs will be subject to delays, challenges, and lack of implementation.

It must be recognized that stakeholders who occupy different roles in connection with earthquake risk (e.g. builders versus building owners versus renters) have very different perceptions of the situation and different ideas about risk and the costs and benefits of taking implementation actions. Reaching agreement on vulnerability reduction programs and their implementation requires bargaining and tradeoffs.

Stakeholders should participate in not only development and implementation of EVR plans but also the broader range of plans related to social, economic, and physical development. EVR stakeholders should play a role in identifying, selecting, and implementing the risk reduction elements of larger development projects. Societal goals and objectives must lie at the foundation of any development project. So, as societal awareness of hazards, risk, and risk reduction grows, the mitigation of risk should emerge as a societal value and a factor that is considered in the selection of projects for funding.

2. **Sustainability Criteria for EVR Program**

Sustainability (from the Latin *sustineo*, “keep up”), means supporting, especially for a long period. The concept of “sustainable development” (development that meets the needs of the present without compromising the ability of future generations to meet their own needs) is supported, at least in theory, around the world.

“Sustainable hazard mitigation”\(^4\) has been proposed as the path for ensuring the reduction of future disaster losses. For an EVR program to be sustainable, that is, supported over a long period, there simply must be forces at work within the community that keep it alive.

If we consider the factors (presented in Session 5-01) that lead to a community’s own sustainability, some criteria for a sustainable EVR program become evident:

- Some support from the underlying local economy and private sector
- Local networks and capability for EVR
- Consensus among stakeholders
- Mechanisms for implementing risk reduction measures

In India, many lessons have been learned from years of experts’ vulnerability reduction experience in both pre-event and post-event environments. In short, vulnerability reduction tools have been found more useful, and thus more sustainable, when they:

1) Are localized; i.e., when they are adapted to address the specific regional, city-wide, or neighborhood demands for vulnerability reduction
2) Conceive the users as citizens
3) Enhance the voice of the vulnerable citizens or victims
4) Recognize and encourage cooperation of diverse citizens and groups
5) Lead to work, shelter, food, finance, education, or good health, i.e. produce livelihood or other gains.\(^5\)

2.1 A Disaster as a Motivating Factor

In the past, too often it has taken a disaster to create change in public and institutional attitudes toward risk. Yet while a disaster can initiate change, sustainability over the long term depends on the continuing convergence of awareness, motivation, and supporting legal and institutional arrangements.


Case Study: Colombia

In Colombia, it was the destruction of the town of Armero by the eruption of the El Ruiz volcano in 1985 that created the political will to adopt a new emergency management system for the country. As a consequence of the disaster, every region and municipality became required to establish its own inter-institutional committee for risk mitigation and disaster preparedness, involving technical and scientific experts and planning, education, and emergency response officials. In the Colombian capital of Bogota, strong collaboration between public officials and local academic and scientific institutions has resulted in development of earthquake scenarios and loss estimations that have served as the basis for ongoing public education and mitigation activities.

Case Study: Tangshan

The city of Tangshan, China, was leveled in 1976 by a severe 7.8 earthquake. Entirely rebuilt, Tangshan has not forgotten the lessons of its tragedy. Its museum, monument, and preserved earthquake ruins are focal points for spreading knowledge about earthquake science, earthquake-resistant architecture and construction, and emergency evacuation, self protection, and measures to prevent secondary effects. July 28th is designated "earthquake day" to popularize and instill into the minds of primary and secondary school students the scientific and technical knowledge to overcome the fear and mystery of earthquakes and promote adaptive behaviors. After years of effort, the city reports a high level of awareness and ability to mobilize the population to reduce earthquake impacts.

3. Social, Political and Economic Feasibility

EVR programs have little chance of success unless they are acknowledged to be socially, politically, and economically feasible in the time and place they are to be implemented. The environment is full of social and other constraints including uncertainty, time pressures, competing priorities, and lack of resources.

3.1 Social and political feasibility

The first step in maximizing the social and political feasibility of an EVR program or activity is developing understanding of the socio-
political environment that constrains and supports the decision-making process\(^6\). Constraints include:

- Inadequate information
- Inadequate time
- Inadequate resources
- Conflict in terms of competing priorities

EVR decision-making is supported by:

- Acquisition of allies
- Adequate information
- Adequate resources
- Time pressure can be an ally

Political acceptability can be enhanced through the following strategies\(^7\):

- Identify and involve diverse stakeholder groups early in the process. Make information widely available.
- Consider developing a task force of stakeholders or other formal mechanism for stakeholders to work together in a group.
- Nurture internal champions who emerge. Provide as much support, encouragement, and technical information as possible to them.
- Consider creating a standing commission to address implementation issues. This commission could monitor and review implementation progress and shifts in the environment, and could serve as a link among different community groups, special interest groups, and public officials.

### 3.2 Economic feasibility: cost-benefit analysis

Resources, public or private, are always limited, so EVR activities always most compete with other programs and activities for the same resources. The lack of financial resources is a frequently cited reason for doing nothing. Determining that an activity is cost-beneficial is a part of choosing the right solution to a risk problem. A cost-benefit analysis should be incorporated into the decision process. In fact, every mitigation option under consideration should be evaluated in terms of its cost-benefit or cost-effectiveness, although a detailed study may not be necessary.

A cost-benefit analysis evaluates the efficiency of a project, over time, in achieving a beneficial outcome. When individuals consider whether or not to make an investment, they generally consider only the benefits that will have a direct personal impact on them.

---

\(^6\) Adapted from Earthquake Engineering Research Institute, *Public Policy and Building Safety*, 1996.

\(^7\) Same as footnote 8.
However, in public decision-making, one must weigh the societal impact and perspective, incorporating all benefits and costs affecting society.

There are four main steps in conducting a cost-benefit analysis of proposed projects:\(^8\)

1) Measuring all the direct and indirect costs of the proposed projects. These might include "opportunity costs," or the loss of the benefits that would have accrued from some alternative use of the resources that will be devoted to the project.
2) Measuring all the direct and indirect benefits of the proposed projects, including avoidance of losses and beneficial "spillover" effects, such as increasing the productivity of land adjacent to the land actually receiving the benefit of irrigation.
3) Discounting future net benefits and expressing them in current monetary terms. This is done by using a discount rate to convert future values into present values. The discount rate used is usually the borrowing rate.
4) Evaluating the net present value of the proposed projects. An equation is applied to determine the net present value of the projects and to determine whether the value is positive and whether it is higher than that of alternative projects. A resulting benefit to cost ratio of greater than one indicates that the discounted benefits exceed the discounted costs (or a "positive" benefit to cost ratio).

It is not always feasible to be precise in these calculations. Therefore, at times decision-makers may rely on an intuitive approach to cost-benefit analysis.

In the real world, cost-benefit analysis is modified by:\(^9\)

- National priorities, e.g. protection of specified assets, tourism values, and land values
- Pre-set budget limits, e.g. a form of priority in the financing agenda
- "Points collection" policies, e.g. a project format has to collect "points" under a policy satisfaction score card
- Unquantifiable benefits or negative consequences, e.g political viewpoints of governments and oppositions.

Another way to look at cost-benefit or cost-effectiveness analysis is by considering it as "value for money," with two approaches:\(^10\)

---

\(^8\) Adapted from the *Primer on Natural Hazard Management in Integrated Regional Development Planning*, Organization of American States, 1991.

\(^9\) From UDM1 class handout prepared by David Oakley, 1997.

\(^10\) Ibid.
Least Cost Option

- Acceptable risk standards are agreed to, in regard to:
  Personal loss/injury
  Public infrastructure
  Neighborhoods and housing
  Economic plant
  Protection of the environment
- Costs of alternative plans/projects to meet the standards are examined
- The least cost proposal is identified

Fixed Cost Option

- This option involves working to a financial limit
- The budget is identified first, then the required standards are defined
- The costs of alternatives that reach the standards are examined
- The lowest cost proposal that meets the standards is selected
- If the lowest cost proposal exceeds the budget, community contributions are sought, and/or standards are reviewed and changed, e.g. from a standard of protection to a standard of warning.

4. Role of Leadership

“Unless the most senior government officials commit to implementing mitigation practices, as an investment in protecting assets and conserving resources, disaster reduction will be of low priority. History shows that without such leadership, short-term crises will overshadow the long-term consideration and absorb the resources needed for effective loss reduction measures.” In addition, leadership from the community is equally important, as “Governments cannot sustain mitigation measures without broad public support.”

R. Hamilton, 1999

Leadership plays a vital and essential role in EVR implementation; in fact, without leadership within the government and community, implementation is unlikely to take place. EVR activities have the best chance of success if they have a local “champion,” that is, someone with some influence or power who is very interested in
EVR activities and is willing to take action and assume some risk to make certain that EVR activities are carried out. A champion is an activist-leader. A champion may be anyone with conviction, determination and persistence—a government official, a professional in one of many fields, or a community activist.

Usually it takes a combination of both “top-down” and “bottom-up” approaches to effectively manage risk. National government resources, guidance, leadership, commitment, and technical assistance are needed, while local governments and communities must contribute the political will to focus attention and scarce resources on EVR activities.

5. Marketing to Key Stakeholders

“If messages are not communicated well enough, public and political pressure will continue to emphasise immediate response and recovery, undermining more comprehensive strategies offering greater long-term benefits.”

Neil Britton 1999

There is no doubt that media attention and increased access to information has raised public awareness about earthquakes and other disasters. However, translating that awareness into increased advocacy for and participation in activities to reduce earthquake vulnerability before the quake is a continuing challenge.

In fact, the best way to “market” EVR to other people and organizations who should have an interest in EVR is to involve them in every step of the EVR process, including identifying the earthquake threat, determining what in the community is vulnerable to earthquakes, selecting EVR strategies and priorities, and implementing EVR activities.

5.1 Storytelling

In India, several NGO’s are finding the simple technique of storytelling to be an effective method of exploring and explaining local vulnerability. Individuals and family members are encouraged to describe how they cope with or have suffered the effects of disasters, and their stories are incorporated into training and planning sessions. “When they are combined with independent post-event audits of disaster relief work, these victims’ stories have proven to be very influential advocacy tools.”

---

11 Adapted from Dr. Ian Davis, “Ways to Measure Community Vulnerability,” Natural Disaster Management, 1999, pp. 87-89.
12 Davis, op. cit., p. 89.
5.2 Role of the media

An informed and concerned public is a key to effective risk management and loss reduction programs. One United Nations public awareness campaign (1998) promoted the slogan, "Prevention begins with information." The theme of the campaign was to encourage working with the media as a key element in achieving the goal of building a culture of prevention, making risk reduction a public value. Experience has proven that reaching the right audiences with effective messages at times when they are inclined to be receptive can go a long way toward promoting disaster preparedness and mitigation.\(^\text{13}\)

The mass media should be understood as both an element of social structure and as an industry.\(^\text{14}\) The public is eager to be in touch with events at the earliest moment. We have, throughout much of the world, a mass media culture. The mass media is a form of social communication. For instance, one newspaper may be read by several individuals in a tea house. The head of a household may go to the tea house, read the newspaper, discuss items of interest with friends, then return home and relate to his family members what he feels is important for them to know.

While providing a form of social communication, the mass media functions as a capitalistic industry, operating to make a profit. The general interest of the media is to maintain and increase their audience (as a market and community) by selling or providing information, entertainment, and avenues for expression. The focus of media attention will always be news which is of priority interest to the media organization's own audience.

The manner in which the mass media depict earthquake hazard and risk information and disaster impacts has enormous influence on public perceptions. The media like to convey news that will grab the attention of the audience. An earthquake disaster that will occur five years from now is not news. News must be current. Likewise, it is unlikely that earthquake vulnerability reduction actions will be reported by the media unless they have good reasons for reporting them.

News organizations depend on creating sensations and emotions in their audiences. For instance, the story of the death of a beloved celebrity or public figure, especially a sudden death, can evoke tremendous feelings of sorrow and grief in the public. This aspect of


\(^{14}\) This discussion of the role of the media is based on a Natural Disaster Mitigation-1 course lecture and handout by Lakshman Gunasekara, editor of The Observer, Colombo, Sri Lanka, 1999.
human emotional involvement in the news is important to understand. Human drama is important, as everyone has seen time after time in news reports. The media seek out victims and show their emotions in intimate close-ups to express the agony and tragedy of their loss. And people watch and listen, affected by the emotion.

5.3 Creating partnerships and coalitions

Involving stakeholders in EVR activities means bringing new groups and organizations into EVR planning and implementation. Projects such as the Asian Urban Disaster Mitigation Program (AUDMP) are about bringing science to life for citizens, and getting people interested in a positive way in dealing with risk.

For example, in Antofagasta, Chile, a RADIUS workshop brought together representatives of the port and the airport, the civil registry, a local museum, the insurance industry, the teachers' association, and a minister, in addition to the Red Cross, hospital, fire, and law enforcement. These community representatives all have contacts throughout the city and are now potential champions and advocates for EVR actions.

In Bandung, Indonesia, over 200 primary and secondary school students participated in a RADIUS Project workshop. Their great enthusiasm and eagerness to learn about earthquakes inspired and motivated participating government officials and institutional representatives.

6. Institutionalization and Developing Ownership

6.1 Generating community ownership and action

The decade of the 1990s generated a focus on community-level activities to create disaster resistance and self-reliance. For instance, China's new Law on Earthquake Disaster Preparedness and Reduction, implemented in 1998, provides that government at all levels should publicize knowledge about earthquake disaster preparedness and reduction, improve citizens' awareness, and develop citizens' capability for self rescue and mutual rescue in case of earthquake disaster. In Shanghai, there is a strong emphasis on enhancing citizens' consciousness of disaster reduction and scientific understanding of the hazards. The local government employs television, broadcasting, popular poster paintings, and earthquake rehearsals and drills to popularize self rescue and mutual rescue techniques and self protection measures. The whole of society has a role in comprehensive disaster prevention and preparedness.
Community understanding and commitment have been demonstrated to help create and reinforce political will and commitment to take action at the local government level. Elected leaders respond to the desires and demands of their constituents. When disaster reduction becomes a public value, government commitment comes more easily.

6.2 Institutionalization

As noted in Session 5-01, EVR needs to be “institutionalized,” or integrated into a city’s or a society’s laws, practices or customs. Institutionalizing EVR depends on building the capability and confidence of local institutions and organizations to plan and implement the EVR activities that make the most sense in their own local environment. Local institutions—NGOs, government, and the private sector—can be empowered, through training and access to scientific and technical information and to workable strategies and solutions, to carry on EVR planning and mitigation processes.

Institutionalization usually involves assignments of responsibilities for carrying out EVR activities to many organizations, establishment of a focal point organization, and creation of an inter-organizational committee, board or council to coordinate EVR activities.

Assignments of functions and responsibilities among ministries and other organizations need to be accepted by all the involved entities and should be formalized by law, implementing regulations or executive order, or an EVR plan.

A common inter-institutional arrangement to provide for inter-agency coordination is a standing interagency committee or council that meets regularly and pursues an action agenda of overseeing the development and implementation of the EVR plan and monitoring EVR activities.

Inter-institutional coordination does not come naturally. Coordination and inter-agency cooperation are always difficult but especially so in any society that is accustomed to a hierarchical government structure and societal order. In a hierarchical structure, whoever has higher rank has greater power, and whoever has greater power usually exercises that power by taking charge and by making decisions unilaterally rather than through a participatory process among equals. Coordination implies open discussion and collaboration among equals, rather than a command/control relationship.

7. Sources of Financial Support

Securing commitments of resources for EVR activities is a complex process involving many factors. Decisions to implement EVR
activities can be made at various levels--personal, family, community, organizational, and governmental. In each case, the critical factors are who stands to gain or lose by the measure, and who should pay. These factors are tempered by many others including attitudes, knowledge about the earthquake hazard and risk, selectivity in paying attention to new information, habits, social expectations, culture, thought processes, other social factors, economic constraints, incentives, and legal considerations.

Expanding on the key issue of who benefits and who should pay, the overall policy issue to be addressed can be defined as:

Where should we spend whose money to undertake what purpose to save which lives with what probability? Who should bear the cost and responsibility to mitigate risk and how?

### 7.1 Leveraging funds

The sources of financing for an EVR project in urban disaster mitigation may be many. For instance, one project could draw the following sources and levels of finance:  

<table>
<thead>
<tr>
<th>Source of Financing</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>International banks (low interest loan)</td>
<td>36%</td>
</tr>
<tr>
<td>Regional bank (low interest commercial loan)</td>
<td>30%</td>
</tr>
<tr>
<td>Community bank (funding from international NGO)</td>
<td>8%</td>
</tr>
<tr>
<td>National government</td>
<td>4%</td>
</tr>
<tr>
<td>Provincial government</td>
<td>4%</td>
</tr>
<tr>
<td>City government tax or revenues</td>
<td>4%</td>
</tr>
<tr>
<td>&quot;Food for Work&quot; program</td>
<td>9%</td>
</tr>
<tr>
<td>Local neighborhood contributions</td>
<td>3%</td>
</tr>
<tr>
<td>Project implementation agency grant</td>
<td>2%</td>
</tr>
</tbody>
</table>

Total 100%

Often, the commitment from one organization to providing financing or funding can be used as leverage or incentive for another to also contribute. This is also true in terms of non-financial resources committed to a project. Money attracts money; commitment attracts commitment.

EVR activities need to be "marketed" in a market economy. EVR measures have to bring, and be seen as bringing, sustainable economic benefits to the community. EVR must be seen as not only reducing damage but promoting a positive environment for enterprise and investment.

---

15 From UDM1 class handout prepared by David Oakley, 1997.
7.2 Integrating EVR in development planning

One of the emerging best approaches to getting EVR projects funded and implemented is by integrating EVR programs into ongoing development planning. There are several advantages:

- Measures to reduce vulnerability are more likely to be implemented as part of development projects than as stand-alone mitigation proposals.
- The costs are less when the mitigation measure is a feature of the original project formulation than when it is incorporated later.
- The planning community can help set the science and engineering research agenda to focus more on generating information suitable for immediate use in mitigation.
- Building vulnerability reduction into development projects benefits the poorest segments of the population.

Integrated development planning is a multidisciplinary, multisectoral process that includes the establishment of development policies and strategies, the identification of investment project ideas, the preparation of projects, and final project approval, financing, and implementation. When risk is considered in development investment decisions, then risk reduction can be incorporated into projects as they are designed, and at low cost.

7.3 Promoting lender and donor support for mitigation

Three strategies have been suggested in the Organization of American States' Primer on Natural Hazard Management in Integrated Regional Development Planning for promoting interest among lending and donor agencies in providing funding for hazard and risk assessments and mitigation.17

7.3.1 Change the context in which lenders and donors perceive governments and agencies to be addressing hazards issues

Recipient countries can show their capacity to deal with hazards by focusing on priority hazards and sectors; by choosing simple, practical information collection and analysis systems; and by demonstrating a commitment to implementing study findings. Technical agencies can make their study outputs appeal to lenders and donors by seeking practical and cost-effective solutions to recurring problems. They also can identify mechanisms for cooperation with financing agencies, such as pooling technical resources, sharing information and experiences, and joining together in staff training.

---

16 This section is adapted from the Primer on Natural Hazard Management in Integrated Regional Development Planning, Organization of American States, 1991.
17 Ibid., p. xvii.
7.3.2 Make it easy for them

Donors and lenders will be more willing to incorporate hazards considerations into projects if it requires minimum change in existing procedures. Making it easy for them could include providing reusable information, integrating hazards concerns into existing review mechanisms, promoting proven mitigation measures in relation to specific types of projects, incorporating appropriate costs and benefits of mitigation into project preparation and evaluation.

7.3.2 Promote the concept of accountability for losses

Lenders and donors should be made more aware that the projects they plan or fund may suffer losses from disasters, and these losses should be evaluated in the context of their negative impacts on development, economic growth, and repayment performance. The performance of staff of lender and donor agencies should be evaluated in terms of taking mitigation and hazards management into account.

References


